A Survey of Parallel Programing Tools

Doreen Y. Cheng!

Report RND-91-005, May 1991

RND Branch
NAS Systems Division
NASA Ames Research Center
Mail Stop 258-6
Moffett Field, CA 94035-1000

1 Computer Sciences Corporation, NASA Contract NAS 2-12961, Moffett Field, CA 94035

-2- PRECEDING PAGE BLANK NOT FILMED

Introduction

This survey examines thirty-nine parallel programming tools. Focus is
placed on those tool capabilities needed for parallel scientific programming rather
than for general computer science. The tools are classified with current and
future needs of NAS in mind: in particular, existing and anticipated NAS super-
computers and workstations, operating systems, programming languages and
applications. They are divided into four categories: suggested acquisitions, tools
already brought in, tools worth tracking, and tools eliminated from further con-
sideration at this time.

Section 1 lists the tools that are suggested acquisitions. They have been
ranked according to the functions provided, maturity at the time of this survey,
and suitability of building new functions on top of them. Some of them have
overlapping functions. They have been listed in order, most preferred first; price
was not considered in this ranking.

No ordering has been placed on the listing for the remaining sections. Sec-
tion 2 presents the tools that have already been brought to NAS, but which are
not yet available to the users. They were obtained either because they were in
the public domain, or some of their functionality was desired by NAS parallel
tool developers. Of these tools, only Schedule, Force, ParaScope, Axe/Aims,
Parti, Hypertask, and CRAY/fpp are of current interest to NAS.

Section 3 lists the tools that are of interest to NAS, but not suggested
acquisitions at this time. Some of them are in an early, but active, research
stage. Others have been discarded after being evaluated at NAS; they may
become very attractive if new development directions are taken. It would be
prudent to keep track of their development.

The tools in Section 4 are eliminated from further consideration at the
present time. Some of these tools are eliminated because they are not suitable
for NAS applications or NAS platforms. Others are eliminated because it is
difficult to contact and collaborate with their developers.

The functions and maturity of each tool are evolving as well as the interests
of NAS users and parallel tool developers. Except for Axe/Aims, the information
collected in this survey reflects the status up until February, 1991. Changes in
Axe/Aims between February, 1991 and May, 1991 have been included.

To make it easier for readers to find a specific tool in the report, an alpha-
betized look-up table is included at the beginning. The table indicates the use-
fulpess of a tool to NAS as well as the page and section where the tool is
described.

Four tables are appended at the end of the report. These tables compare
the features and status of the tools that are of immediate interest to NAS (i.e.
those in Sections 1 and 2 and some in Section 3). The first table lists the func-
tions of the tools that transform a sequential program into a parallel one. The
second table covers the functions that help users write parallel programs. The
third tables lists the functions that assist in parallel debugging and performance
optimization. The last table lists the availability and system requirements of the
tools.

In this report, OS means operating system and GUI represents graphic user
interface.

Index
_Name Useful to NAS | Page Number | Section Numbe
__Jx%Aimi Y 20 2.5
C-Linda Y 13 1.9
Caper N 30 3.9
Code/Rope N 35 3.10
CRAY/fpp Y 25 _ 210
Dino Y 31 3.6
E/SP Y 7 1.3
Y 6 1.2
FATCAT Y 9 1.5
Faust Y 10 1.6
FLO N 33 3.8
Force Y 17 _22
Forge/MIMDizer Y 3 1.1
-Li Y _ 27 3.2
Y 24 29
Hypertool Y 15 1.11
IC* N 41 4.5
IPS-2 Y 11 1.7
i- Y 32 3.7
KAP /CRAY N 36 3.11
| Monmacs Y 14 1.10
| OQACIS Tools N 34 3.9
| Olympus N 38 42
|__Paragraph/PICL Y 23 2.8
ParaScope Y 18 2.3
| ParaScope/Debugger Y 28 3.3
Parti Y 22 _2.7
Pat N 19 2.4
Pie N 21 26
N 37 4.1
Poker N 29 3.4
PPD Y 26 31
| Schedule Y 16 2.1
| Simple/Care N 43 4.7
Strand88 Y 12 1.8
N 40 4.4
Triplex N _39 4,3
VecPar 77 Y 8 1.4
YMMP N 42 4.6

1. Suggested Acquisitions

1.1 Forge/MIMDizer

Function of Forge:

® Program instrumentation

® Dependency analysis

® DO-loops parallelization guided by run time profiling

® Parallel/vector directives insertion

® Queries about the program (use-def, call-tree,
common use, routine interface consistency, timing
variable trace, etc)

® Code restructuring (invert loop, split loop, merge loop,
collapse nested loops, unroll loop, inline routine,
remove secondary induction variables, etc)

® A database on which new tools can be developed

Function of MIMDizer:

@ All functions of Forge available
® Language extension to Fortran for programming
message-passing machines
® Code frames generated for specification of communication
and synchronization between code blocks written in
Fortran (specification automatically transformed
into message passing)
® Consistency checking for message-passing, variable
definition, and caller-callee argument passing
@ Automatic decomposition of arrays and static distribution
of loops onto processors
® Automatic and dynamic repartitioning of arrays when
needed
® Monitoring facilities for performance tuning and debugging

-5-

Evaluation of Forge by Doreen Cheng through use:

® The interactive nature provides convenient access to
the tools and to information about the program.

® Preliminary evaluation showed the user response time is
faster than that of other tools with similar functionality.

® The database is designed for program analysis. The size
of the Forge database is only 3 to 4 times the size of
the source code. Its speed is noticeably faster.

® Many bugs were encountered but PSR fixed them quickly.

® Forge flags a converted loop as parallel by simply
using a DO ALL compiler directive. This has resulted in
significant performance degradation which cancels the
potential speedup by parallelization.

® Forge lacks the capabilities to guide dependence
elimination, code transformation and parallelization.

® Vectorization and parallelization functions do not use a
common user interface and do not allow mixed usage.

Evaluation of MIMDizer by Doreen Cheng through literature search and
phone contacts with the vendor:

® Extensive set of tools for programming message-passing
machines.

@ Alpha release.

® Lacks automatic load balancing.

Platform for Forge: Y-MP, X-MP, CRAY?, Sun, IRIS, NEC (negotiating)
Platform for MIMDizer: iPSC, Sun, IRIS
0OSs: UNIX

Language: Fortran
GUIL: X-Windows, Sunview
Cost*: $28,050/ workstation; $4,500/yr maintenance
Facility license**: $93,500
Unlimited license***: $158,950, $18,000/yr maintenance

Supplier: Pacific Sierra Research

Contact: John Levesque, (916) 621-1600

* Numbers quoted are for NASA Ames Research Center.

** One of two options available:

1) Software available for running on up to 10 workstations.

2) X-Window and/or terminal version for running on a single-host
communicating with as many workstations (running X-Windows)
or terminals emulating VT100.

**% Uplimited workstations and unlimited hosts running X-Windows and/or
terminal version.

See reference 123

1.2 Express

Function:

® Library calls provided for parallelization

® Program instrumentation

©® Hardware configuration management

® Automatic loop parallelization

® Automatic data distribution and domain decomposition
® Run time profile used for guidance

® Dynamic load balancing

® Parallel I/O

® Interactive memory access visualization

® Post-mortem communication and event analysis
® Communication and event monitoring

® Parallel algorithm monitoring

® Source level debugger

® Deadlock detection

® Converts Fortran 90 source code to Fortran 77
® A database used for run time information

Evaluation by Doreen Cheng through literature search and phone
contacts with the vendor:

® Provides extensive set of tools for message-passing
machines (debugging, performance monitoring, load
balancing and paralielization).

® Covers a broad range of hardware, operating system, and
languages.

® Debugger, profiler, parallel I/O, graphics are not
available on Y-MP, and may not be in the future.

® Lacks support for interactive dependency analysis.

Platform: iPSC, Y-MP (beta), NCUBE, Sun, PC, Macintosh
OS: UNIX, DOS, Macintosh
Language: Fortran 77, Fortran 90, C, C++

GUL: = X-Windows, Sunview, Postseript
Cost: $3,000 per Intel iPSC/860
$15,000 per Y-MP

$1,500 for network of Suns
20% maintenance fee per year

Supplier: ParaSoft
Contact: Adam Kolawa, (818) 792-9941

See reference 4

1.3 E/SP:

Function:

® Program instrumentation

® Dependency analysis

® DO-loop parallelization

® Rough estimate of performance

® Parallel directive insertion

® Graphic editor for constructing new parallel programs
® A database for developing new tools

Evaluation by Doreen Cheng through literature search, observing demo,
and phone contacts with the vendor

® The interactive nature provides a convenient access to
tools and information about the program.

® For 1000 lines of code, 1 Mbytes is required for the
database generated.

® It lacks support for vectorization.

® It lacks the capability to guide dependence
elimination, code transformation and parallelization.

Platform:
® Sun
@ In the process of negotiating with Kuck Associates
for CRAY code generation
® Port to IRIS possible if desired

Language: Fortran

0S: UNIX
GUIL: Sunview, X-Windows
Cost: TBD

Supplier: Scientific and Engineering Software Inc.

Contact: James. C. Browne, (512) 474-4526

See reference 5

1.4 VecPar_77

Function:

® Dependency analysis

® Code transformation for vectorization (merge loops and if
blocks, eliminate dependence, unroll loop, permute
loops, etc)

Evaluation by Doreen Cheng through literature search and phone
contacts with the vendor and users:

® Support for Fortran 90 is being discussed.

® Has a command-line oriented textual user interface.

® It lacks the capability to guide dependence
elimination, code transformation and parallelization.

® Vectorization and parallelization tools are two separate

tools.
® For large subroutines, large amounts of memory are
required.
Platform: Sun, Y-MP
OS: UNIX

Language: Fortran

GUIL: None

Cost: $2,500/ workstation; $19,500/Y-MP
Unlimited license (use and machine) $33,510/yr
Perpetual: $78,250

Supplier: Numerical Algorithms Group Inc.

Contact: Sheila Caswell, (708) 971-2337

See reference 8

-10 -

1.6 FATCAT

Function:
® Dependency analysis

Evaluation by Doreen Cheng through literature search and phone
contacts with the vendor and users:

® Able to analyze dependencies in recursive calls.

® Ported onto Y-MP in much shorter time than university
products.

@ Difficult to interpret the output (too much data, little
guidance).

® The company is looking for funding for further development.

® For large subroutines, large amounts of memory are

required.
Platform: Sun, CRAY?2, X-MP, Y-MP
0s: UNIX

Language: Fortran
GUIL: None

Cost: $50,000 for source license
Executable not for sale

Supplier: New Jersey Advanced Technology Inc.
Contact: David Klappholz, (201) 420-5509

See reference '

-11-

1.6 Faust:

Function:
® Dependency analysis
® Interactive variable tracing
@ Simulator to discover the parallelism in a program
® Performance monitoring
® Interactive graphic user interface

Evaluation by Doreen Cheng through literature search and phone
contacts with the supplier:

® Tools could be integrated into NAS environment.
Platform: CRAY
OsS: UNIX
Language: Fortran
GUL X-Windows
Cost: $100 for source
Supplier: CSRD of Univ. of Illinois
Contact: David Hammerslag, (217) 244-0277

See reference 8

12 -

1.7 IPS-2

Function:

® Performance monitoring, analysis, and visualization
® Critical path analysis and visualization

Evaluation by Doreen Cheng through literature search and e-mail
with the supplier:

® Second implementation reduces program intrusiveness
and storage requirements, and adds a graphic user interface.
® Tools could be integrated into NAS environment.
Platform: Y-MP (will be ready by summer 1991), Sequent Symmetry
0S: UNIX
Language: Fortran, C
GUL: X-Windows (X11)
Cost: $300 for source

Supplier: Univ. of Wisconsin

Contact: Barton P. Miller, (608) 263-3378

See reference 9

-13-

1.8 Strand88

Function:
® Parallel language that calls code blocks written in
Fortran or C
® Tools that monitor processor and communication load,
and visualize the data

Evaluation by Doreen Cheng through literature search and attending
seminar:

® The prolog-like language may be difficult for scientists
to accept.

Platform: iPSC, Sun, Y-MP (available in spring 1991), Sequent, Encore
0s: UNIX
Language: C, Fortran
GUI: X-Windows
Cost: $22,000 for iPSC/860; maintenance $3,375/yr
$3,000/Sun; maintenance $900/yr
Site license range: $30,000 to $40,000
NAS can get 30% government discount
Supplier: Strand Software Technology Inc.

Contact: Timothy G. Mattson, (503) 690-9830

See reference 10 11

-14 -

1.9 C-Linda

Function:

® Language extensions for parallel programming

® Source level debugger

® Program execution monitoring and visualization

® Consistency checking for tuple space usage

® Monitors message traffic and moves Linda run time
library to reduce the traffic.

® Tuple space usage visualization

Evaluation by Doreen Cheng through literature search and phone
contacts with the supplier:

® Supported on a broad range of hardware platforms.
® Fortran routines can be called.

Platform: iPSC/860 (will be available shortly),
Y-MP (not fully debugged), Sun, IRIS, IBM RS6000
Apollo, Encore, Sequent

OS: UNIX

Language: C, Fortran (Fortran is not directly supported, can be
called from C.)

GUL X-Windows (for debugger)
Cost: $7,000/10 workstation

$20,000 for iPSC/2

Site license for ARC: $90,000
Supplier: Scientific Computing Associates Inc.

Contact: Ellen Smith, (203) 777-7442

See reference 1213

-15-

1.10 MONMACS

Function:

® Language extensions for parallel programming
® Post-mortem performance analysis

Evaluation by Doreen Cheng through literature search and phone
contacts with the supplier:

® Has non-standard extensions.
Platform: iPSC/860
OS: UNIX
Language: C, Fortran (available in March, 91)
GUI: X-11
Cost: Public domain
Supplier: Argonne National Lab
Contact: Ewing Lusk (708) 972-7852

See reference 14

-16 -

1.11 Hypertool

Function:

® Automatic partitioning of a program for message-passing
machines

® Inserts communication and synchronization primitives

® Automatic scheduling and load balancing

Evaluation by Doreen Cheng through literature search and phone
contacts with the supplier:

® Requires the user to call all routines that will be
executed concurrently from the main routine.

® Retargetable compilers are planned.

® Is a research product, still buggy.

Platform: iPSC/2

OS: UNIX
Language: C
Cost: University distribution

Supplier: U.C. Irvine
Contact: Daniel D. Gajski (714) 856-4155

See reference 1%

-17 -

2. Tools Already in Ames Research Center:

2.1 Schedule

Function:

® Language extension to express dependencies between
code blocks written in Fortran

® Performance monitoring

@ Memory access visualization

® Program execution visualization

® Critical path determination

® Program profiling

® Task scheduling

® Dynamic load balancing

Evaluation by Doreen Cheng through literature search and observing
demo:

® Helps in writing new parallel programs.

® For functional parallelization.

@ Loops need to be transformed to subroutine calls for

parallel execution.

® No help in dependency analysis.

® Static specification for parallelism only.

® Versions work for message-passing machines will be
available at the end of summer, 1991.

Platform: CRAY2

OS: UNIX

Language: Fortran

GUI: X-Windows

Cost: Public domain

Supplier: Univ. of Tennessee

Contact: Jack Dongarra, (615) 974-8295
Local contact: Doreen Cheng, (415) 604-4361

See reference 18 17

- 18 -

2.2 Force

Function:
® Fortran extension for parallel programming

Evaluation by Doreen Cheng through literature search and phone
contacts with the supplier:

® Good performance has been reported for structure analysis
problems.
® Uses static partitioning, one level fork-join parallelism
only.
Platform: Y-MP, CRAY?2, Encore, Sequent, Convex, Alliant
0sS: UNIX
Language: Fortran
GUIL: None
Cost: Public domain
Supplier: Univ. of Colorado
Contact: Harry Jordan, (303) 492-1411

Local access: Doreen Y. Cheng (415) 604-4361

See reference 18 19 20

2.3 ParaScope

Function:

® Dependency analysis
® Code transformation
® DO-loop parallelization

-19 -

Evaluation by Doreen Cheng through literature search and phone

contacts with the supplier:

® Supplier plans to integrate performance visualization
tools of SCHEDULE into ParaScope.

® Debugging facilities are in development. These tools
may require the program to be written in PCF Fortran.

® Supplier plans to develop tools to allow a user to
annotate a program written for shared-memory machines
and automatically translate it to message-passing.

Platform: SUN

0S: UNIX

Language: Fortran

GUIL: X-Windows

Supplier: Rice Univ.

Contact: Ken Kennedy, (713) 285-5186

Local contact:

See reference

Doreen Cheng, (415) 604-4361

21 22 23

-920-

2.4 PAT

Function:
® Program instrumentation
® Performance analysis
® Parallel debugger
® Static code analysis
@ Interactive parallelization
Evaluation by Kathi Flecher and Doug Pase through use:

® Has serious bugs.
® Lacks many claimed functions.

Platform: CRAY

OS: UNIX

Language: Fortran

GUI: X-Windows

Supplier: Georgia Institute of Technology
Contact: Kevin Smith, smith@boa.gatech.edu
Local contact: Doreen Cheng, (415) 604-4361

See reference 24

-921-

2.5 Axe/Aims

Function:
® Axe provides a Parallel Program Behavior Description
Language for describing interactions between processes.

® Axe predicts the performance of the program.

@ Aims instruments a Fortran program and collects the
run time information.

® A visualization tool allows viewing the behavior and
the run time information.

Evaluation by Doreen Cheng through literature search and phone
contacts with the supplier:

® About to be released for use.
Platform: iPSC/860
OS: UNIX
Language: Fortran
GUIL: X-Windows
Supplier: NASA Ames Research Center
Contact: Jerry Yan, (415) 604-4381

See reference 2%

.99 .

2.6 PIE

Function:
@ Language extensions for parallel programming
® Performance predictor
® Performance trace and visualization

Evaluation by Doreen Cheng through literature search and phone
contacts with the supplier:

® Non-standard language extensions
® Has potential to be more than a performance tuning tool.
@ Difficult to port to UNIX

Platform: Sun, VAX, Encore

Os: Mach (distributed UNIX)

Language: C, Fortran, Ada

GUI: X-Windows

Supplier: Carnegie-Mellon Univ.

Contact: Zary Segall, (412) 268-3736
Local contact: Ann Patterson-Hine, (415) 604-4178

See reference 28 27 28

-923-

2.7 Parti

Function:
® Provides a set of procedures to be called from C or
Fortran program that will translate read/write
into send/receive (transform shared-memory
programs into message-passing).
® Schedules the processes onto iPSC/860.
Evaluation by Doreen Cheng through phone contacts with the supplier:

® Load balancing must be done by the user.
® Supplier plans to extend this by adding higher level tools.

Platform: iPSC/860

OS: UNIX

Language: C, Fortran

Cost: Public domain

Supplier: NASA Langley ICASE

Contact: Joel Saltz, (804) 864-2197

Local access: Doreen Y. Cheng (415) 604-4361

-9 -

2.8 Paragraph/PICL

Function:
® PICL generates execution profile of a parallel program
on message passing machines.
® Paragraph allows visualization of the data collected.
Evaluation by Doreen Cheng through e-mail with the supplier:
® Tools could be integrated into our environment.
Platform: Intel and Ncube hypercubes, Symult/Ametek, Cogent
Language: C, Fortran
GUL X-Windows
Cost: Public domain
Supplier: Oak Ridge National Lab
Contact: Michael T. Heath, mth@indigo. EPM.ORNL.GOV

Local contact: Doreen Cheng, (415) 604-4361

- 925 -

2.9 Hypertask

Function:

® Provides comment-directives for writing C programs
for Intel hypercube machines.

® Provides library calls for dynamically resizing arrays by
a factor of 2 each call

® Automatically divides arrays and loop iterations among all
nodes in a cube of any size at run time.

® Data locality is considered.

® Inserts message passing directives.

® Plots flops/processor in 3D (Sunview only).

Evaluation by Doreen Cheng through literature search and e-mail with
supplier:

® The current version contains known bugs.
Platform: iPSC/860
OS: UNIX
Language: C
GUI: X-Windows, Sunview
Cost: Public domain
Supplier: Intel
Contact: Marc Baber, marc@isc.intel.com

Local contact: Doreen Cheng, (415) 604-4361

See reference 29

- 926 -

2.10 CRAY/fpp

Function:

® Automatic DO-loop parallelization
® Code transformation to take advantage of CRAY architecture

Evaluation by Doug Pase and Katherine Fletcher through use:
® The code generated for NAS benchmarks on Y-MP is 90%
parallelized or less.
@ User interface is batch oriented.
® Uses static program analysis only.
Platform: CRAY machines
0S: UNICOS, COS
Language: Fortran

GUI: None
Supplier: Cray Research

See reference 30 31

-97-

3. Tools Worth Tracking

3.1 PPD

Function:
® Event trace and post-mortem analysis for debugging
® Race condition detection
® Data flow and dependency analysis for debugging

Evaluation by Doreen Cheng through literature search and e-mail
with the supplier:

® Part of it will be available at the end of summer 1991.
Supplier: Univ. of Wisconsin

Contact: Barton P. Miller, (608) 263-3378

See reference 32 33 34

- 98 -

3.2 Fortran-Linda

Function:
® Language extensions for parallel programming
Evaluation by Doreen Cheng through e-mail with the supplier:
® It is a proof-of-concept project not for distribution.

Platform: Encore

Contact: Nick Carriero, carriero-nicholas@CS.YALE.EDU

-929.

3.3 ParaScope/debugger

Function:
® Dependency analysis for debugging
® Static analysis of potential race conditions
® Instrumenting the code for race condition detection

Evaluation by Doreen Cheng through literature search and phone
contacts with the supplier:

® Not available yet
Supplier: Rice Univ.
Contact: Robert Hood, (713) 285-5182

-30-

3.4 Poker

Function:

® Graphic extension to C for parallel programming

® Trace and visualization of instruction execution through
an emulator

@ Visualization of data for debugging (Voyeur)

Evaluation by Doreen Cheng through literature search and phone
contacts with the supplier:

® Scaling is a problem since the process topology
can only be defined statically.

® Poker project is replaced by a follow-up project ORCA
which will incorporate the lessons learned.

Platform: iPSC (buggy), Sequent, Sun

0sS: UNIX
Language: C
GUL X11

Cost: $100
Supplier: Univ. of Washington
Contact: Larry Snyder, (206) 543-1695

See reference 3 38

-31-

3.5 CAPER

Function:

® Graphic language extension to C for parallel programming
on message-passing machines

® A library of parallel algorithms

® A library of functions that convert distributed /parallel
data structures into a target form

® Automatic generation of code to handle I/O

® Simple debugging facility

Evaluation by Doreen Cheng through phone contacts and e-mail with
the supplier

® Not released yet
@ Supplier will port to iPSC if required.

Platform: Sun, HPC (Bell Lab’s machine)

0s: UNIX

Language: C

GUL X-11

Cost: None (may change in the future)

Supplier: Bell Labs
Contact: Binay Sugla, (201) 949-0850

-32-

3.6 DINO

Function:

® C extension for data parallel programming
® Single program multiple data (SPMD)

Evaluation by Doreen Cheng through literature search and e-mail
with the supplier:

® How well it works for CFD applications is not yet clear.
® No plan so far for Fortran.

Platform: Intel Hypercubes

0S: UNIX

Language: C

Cost: University distribution cost

Supplier: Univ. of Colorado

Contact: Bobby Schnabel, bobby@lupine.Colorado.EDU

See reference 37 38

-33 -

3.7 Kali-Fortran

Function:
® Parallelizing compiler
® Using directives to express parallelism on message-passing
machines
Evaluation by Doreen Cheng through phone contacts with the supplier:
® Prototype not completed yet
Supplier: NASA Langley ICASE

Contact: Joal Saltz, (804) 864-2197

-34 -

3.8 FLO

Function:

® A graphic parallel programming language for scientific
applications

Evaluation by Doug Pase:
® Propietary design by Floating Point Systems

® Very attractive conceptually
® No compiler available

Supplier: None
Contact: Martin Waugh (503) 629-7651 (Designer of FLO)

-35-

3.9 OACIS Tools

Function:

® A graphic parallel programming language for scientific
applications based on ELGDF.

® Generates code for C-Linda and Strand88.

® When target machine topology and the task graph of a
program is entered as input, a schedule of the
run-order of each task is produced.

® Analyzes a sequential program and saves the analysis
in a database.

Evaluation by Doreen Cheng through literature search and phone
contacts with the supplier:

@ Still in research prototyping stage.
® Using graphic user interface for Linda and Strand88 can
be more intuitive for scientists than the languages’
original user interface.
® Currently the tools are on Macintosh only.
Platform: Macintosh
Supplier: OASIS

Contact: Tony Capitano, capitano@sunny.oacis.org

See reference 39

- 36 -

3.10 Code/Rope

Function:

® Hierarchical graphic language to specify dependencies
and firing rules of program components written
in C or Fortran

® Insertion of parallel directives

Evaluation by Doreen Cheng through literature search and phone
contacts with the supplier:

® Is a research project.
@ Could be used to learn the pros and cons of graphic
parallel programming languages.
Cost: $200

Supplier: Univ. of Texas, Austin

Contact: James C. Browne, (512)-471-9579

See reference 40 41

-37-

3.11 KAP/CRAY

Function:

® Automatic DO-loop parallelization
® Code transformation to take advantage of CRAY architecture

Evaluation by Doug Pase and Katherine Fletcher through use:
® The code generated for NAS benchmarks on Y-MP is 90%
parallelized or less.
® User interface is batch oriented.
® Uses static program analysis only.
Platform: Y-MP, X-MP, Sun, Vax
OS: UNICOS, COS, UNIX, Ultrix
Language: Fortran
GUL None
Cost: First copy $7,500/yr
Add’] copy $3,750/yr
Site license $15,000/yr
Supplier: Kuck and Associates

Contact: Davida Bluhm, (217) 356-2288

See referenced!

- 38 -

4. Tools Eliminated

4.1 PISCES 2

Function:

® Extensions to Fortran for parallel programming
® Performance monitoring

Evaluation by Doreen Cheng through literature search and phone
contacts with the supplier:

® Not on the platforms we have or anticipated having
® No plans for further development

Platform: FLEX/32 (shared-mem)

0S: UNIX

Language: Fortran

Supplier: University of Virginia

Contact: Terrence W. Pratt, (804) 982-2229

See reference 42 43

-39 -

4.2 OLYMPUS

Function:
® Graphic extension to C for parallel programming
Evaluation by Doreen Cheng through literature search:
® s an experimental system.
® Not on the platforms we have and anticipated having.
® Based on RPC.
Platform: Sun
OS: UNIX
Language: C
GUIL: Sunview
Supplier: Univ. of Colorado

Contact: Garry J. Nutt

See reference 44

- 40 -

4.3 Triplex:

Function:
® Program instrumentation and visualization
Evaluation by Doreen Cheng through literature search:
® Not on the platforms we have and anticipated having
Platform: Sun, NCUBE
0S: SunOS
Languages: Unknown
GUL Sunview
Cost: $250
Supplier: Tufts Univ.

Contact: David Krumme (author of the reference)

See reference 4%

- 41 -

4.4 TOPSYS

Function:
® An object-oriented parallel programming tool
® Parallel debugging
@ Performance monitoring
® Dynamic load balancing
® Process-processor mapping
® Program animation
Evaluation by Doreen Cheng through literature search:

® Unable to reach the supplier
® Out of US, difficult to collaborate

Platform: iPSC2

OS: Unknown
Language: C, Fortran

GUIL: X11

Supplier: Univ. W. Germany

Contact: Thomas Bemmerl, bemmerl@lan.infomatik.tu-muenchen.dbp.de

See reference 48

- 49 -

4.5 IC*

Function:
® Specification language for parallel/distributed systems
Evaluation by Doreen Cheng through literature search:
® The language is difficult to use.
® The system is very slow (requires special purpose hardware).
® Designed for communication protocols.
Platform: Unknown
OS: UNIX
GUL Unknown

Supplier: Bell Communication Research, Morristown, NJ

Contact: E. Jane Cameron (author of the reference)

See reference 47

- 43 -

4.6 VMMP:

Function:
® Language extension for programming on both shared-memory
and message-passing machines
® Dynamic load balancing
Evaluation by Doreen Cheng through literature search:
® Has a routine call user interface.
® High efficiency claimed.
® Not able to contact the supplier.
@ Out of US, difficult to collaborate.
Platform: Sun, MMX, IBM ACE
OS: UNIX, MACH
Language: C
Supplier: Tel-Aviv Univ., Israel

Contact: Eran Gabber (author of the reference)

See reference 48

- 44 -

4.7 Simple/Care

Function:

® Discrete event simulator
® Code instrumentation and visualization

Evaluation by Doreen Cheng through literature search:

® For object-oriented languages
® For hardware system design

Platform: Unknown
OS: Unknown
Language: Common Lisp
Cost: Public domain
Supplier: Stanford Univ.

Contact: Nakul Saraiya (author of the reference)

See reference 49

- 45 -

Acknowledgements

I would like to thank Doug Pase, Hal Barraclough, Horst Simon,
and Russell Carter for helping with preparing this report.

- 46 -

References

1.

2.
3.

o

10.

11.

12.

13.

14.

15.

16.

“The Forge User’s Guide Version 7.01,” Pacific-Sterra Research,
Dec. 1990.

Pacific-Sierra Research, MIMD:zer User’s Guide Version 7.01.

Doreen Y. Cheng and Douglas M. Pase, ‘“Evaluation of
Automatic and Interactive Parallel Programming Tools,” Submat-
ted to Supercomputing’91 Conference.

Parasoft, Fzpress Information Package.
James C. Browne, private communication.

Numerical Algorithms Group, Inc., VecPar_77 Tutorial Introduc-
tion and Reference Manual, Dec. 1, 1989.

David Klappholz and Apostolos D. Kallis, “FATCAT: A Tool to
Aid in Maintaining, Modifying, and Parallelizing Fortran Codes,”
System/Software News, National Energy Research Supercomputer
Center, vol. 14 No. 8, Aug. 1990.

Vincent A. Guarna, Jr., Dennis Gannon, David Jablonowski, and
Allen D. Malony, “Faust: An Integrated Environment for Parallel
Programming,” IEEE Software, pp. 20-27, July 1989.

Barton P. Miller, Morgan Clark, Jeff Hollingsworth, Steven Kier-
stead, Sek-See Lim, and Timothy Torzewski, ‘“IPS-2: The Second
Generation of a Parallel Program Measurement System,” IEEFE
Trans. on Parallel and Distrsbuted Systems, vol. 1 No. 2, April
1990.

Ian Foster and Stephen Taylor, in Strand New Concepts in
Parallel Programmsing, Prentice Hall, 1989.

Ian Foster and Stephen Taylor, ‘“‘Strand: A Practical Parallel
Programming Tool,” MCS-P80-0889, Argonne National Labora-
tory.

David Gelernter and James Philbin, “Spending Your Free Time,”
Byte, May 1990.

Sudhir Ahuja, Nicholas Carriero, and David Gelernter, ‘‘Linda
and Friends,” IEEE Computer, pp. 26-34, Aug. 1986.

Edward N May, ‘“Portable Parallel Programming in a Fortran
Environment,” Computer Physics Communications, pp. 278-284,
1989.

Min-You Wu and Daniel D. Gajski, ‘“Hypertool: A Programming
Aid for Message-Passing Systems,” IEEE Trans. on Parallel and
Distributed Systems, vol. 1 No. 3, pp. 330-343, July 1990.

J. J. Dongarra and D. C. Soremsen, ‘“‘SCHEDULE: Tools for
Developing and Analyzing Parallel Fortran Program,” Tech.
Memo 86, Argonne National Laboratory, Nov. 1986.

17

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

- 47 -

J. J. Dongarra and D. C. Sorensen, “SCHEDULE Users Guide,”
Argonne National Laboratory, June 1987.

Harry Jordan, “The Force,” ECE Tech. Report 87-1-1, Jan. 1987.

Harry F. Jordan, Muhammad S. Benten, Norbert S. Arenstorf,
and Aruna V. Ramanan, Force User’s Manual, March 1989.

Olaf O. Storaasli, D. T. Nguyen, and T. K. Agarwal, ‘‘Parallel-
Vector Solution of Large-Scale Structural Analysis Problems on
Supercomputers,” AIAA Journal, vol. 28 No. 7, July 1990.

C. David Callahan, Keith D. Cooper, Robert T. Hood, Ken Knen-
nedy, and Linda Torczon, ‘Parascope: A Parallel Programming

Environment,” International Journal of Supercomputer Applica-
tions, vol. 2 No. 4, pp. 84-99, Winter, 1988.

Alan Carle, Keith D. Cooper, Robert T. Hood, Ken Kennedy,
Linda Torczon, and Scott K. Warren, ‘A Practical Environment
for Scientific Programming,” IEEE Computer, Nov. 1987.

Robert Hood, Ken Kennedy, and John Mellor-Crummey, ‘‘Parallel
Program Debugging with On-the-fly Anomaly Detection,” Proc.
of Supercomputing '90, Nov. 1990.

Bill Appelbe and Kevin Smith, ¢“Start/Pat: A Parallel-
Programming Toolkit,” IEEE Software, pp. 29-38, July 1989.

Jerry Yan, “Axe Environment for Concurrent System,” IEEE
Software, p. 25, May 1990.

Zary Segall and Larry Rudolph, ‘Pie SA Programming and
Instrumentation Environment for Parallel Processing),” IEEE
Software, pp. 22-37, Nov. 1985.

Ted Lehr, Zary Segall, S. F. Vrsalovic, E. Caplan, Alan L. Chung,
and Charles E. Fineman, ‘“Visualizing Performance Debugging,”
IEEE Computer, pp. 38-51, Oct. 1989.

Harren Harrison, “Tools for Multiple-CPU Environments,” IEEE
Software, p. 45, May 1990.

Marc Baber, “Hypertask: Automatic Array and Loop Partitioning
on the iPSC,” Proceedings of the 24th Hawasi International
Conference on System Sciences, Software Track, Issues in Paral-
lel Programming, 1991.

Cray Research, Inc., CF77 Compiling System Volume 4: Parallel
Processing Guzide.

Douglas M. Pase and Katherine E. Fletcher, “Automatic Parallel-
ization; A Comparison of CRAY fpp and KAI KAP/CRAY,”
NASA Ames NAS Technical Report, RND-90-010, Nov. 1990.

Robert H. B. Netzer and Barton P. Miller, *‘On the Complexity of
Event Ordering for Shared-Memory Parallel Program Execu-

tions,” Proc. of 1990 International Conf. on Parallel Processing,
pp- [I-93 - 1I-97, 1990.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

43.

44,

45.

46.

- 48 -

Robert H. B. Netzer and Barton P. Miller, “Detecting Data Races
in Parallel Program Execution,” Proc. of the 8rd Workshop on
Programming Languages and Compilers for Parallel Computing,
Aug. 1990. '

Barton Miller and Jong-Deok Choi, “A Mechanism for Efficient
Debugging for Parallel Programs,” Proc. of the SIGPLAN’88
Conf. on Programming Language Design and Implementation, pp.
135-144, June 22-24, 1988.

Lawrance Snyder, ‘“Parallel Programming and Poker Environ-
ment,”’ IEEE Computer, pp. 27-36, July, 1984.

Gail A. Alverson, William G. Griswold, David Notkin, and
Lawrence Snyder, “A Flexible Communication Abstraction for
Nonshared Memory Parallel Computing,” Proc. of Supercomput-
ing ‘90, Nov., 1990.

Matthew Rosing, Robert B. Schnabel, and Robert P. Weaver,
“The DINO Parallel Programming Language,” Tech. Report CU-
CS-457-90, CS Dept. Unsv. of Colorado at Boulder, April 1990.

Thomas M. Derby, Elizabeth Eskow, Richard Neves, Matthew
Rosing, Robert B. Schnabel, and Robert P. Weaver, “DINO 1.0
User’s Manual,” Tech Report CU-CS-501-90, CS Dept. Univ. of
Colorado at Boulder, April 1990.

Robert Babb, II, Bella Bose, Warren Harrison, Ted Lewis, Vir-
ginia Lo, Sanjay Rajopadhye, Walter Rudd, and Shreekant Thak-
kar, “A Status Report: Parallel Programming Support Environ-

ment Research at Oregon State University,” Tech Report TR-
PPSE-89-10.

J. C. Browne, M. Azam, and S. Sobek, “CODE: A Unified
Approach to Parallel Programming,” IEEE Software, July 1989.

J. C. Browne, T. Lee, and J. Werth, “Experimental Evaluation of
a Reusable-Oriented Parallel Programming Environment,” IEEE
Trans. on Software Eng., vol. 16 No. 2, Feb. 1990.

Terrence W. Pratt, “The PISCES 2 Parallel Programming
Environment,” NASA Contractor Report 178927, July 1987.
Terrence W. Pratt, “PISCES 2 User's Manual,” NASA Contrac-
tor Report 178884, July 1987.

Gary J Nutt, A. Beguelin, I. Demeure, S. Elliott, J. McWhirter,
and B. Sanders, OLYMPUS User’s manual.

David Krumme and Alva Couch, “Triplex Parallel-Execution
Monitor,” IEEE Software, May 1990.

Thomas Bermmerl, ‘“An Integrated and Portable Tool Environ-
ment for Parallel Computers,” Proc. of IEEE International Conf.
on Parallel Processing, pp. 50-53, 1988.

47.

48.

49.

- 49 -

E. J. Cameron, D. M. Cohen, B. Gopinath, W. M. Keese, L. Ness,
P. Uppalury, and J. R. Vollaro, “The IC* Model of Parallel Com-
putation and Programming Environment,” IEEE Trans. on
Software Engineering, vol. SE-14 NO 3, pp. 317-326, March 1988.
Eran Gabber, “VMMP: A Practical Tool for the Development of
Portable and Efficient Programs for Multiprocessors,” IFEE

Trans. on Parallel and Distributed Systems, vol. 1 No. 3, July
1990.

Nakul Saraiya, ‘‘Simple/Care Concurrent-Application Analyzer,”
IEEFE Software, May 1990.

Functions of Parallel Programming Tools (Transform Sequential to Parallel)

Forge/MIMDiser

Express

E/SP

VecPar_77

FATCAT

Dependency
Analysis

Y

Y

Y

Y

DO-Loop
Parallelization

Y

Y

Y

Functional
Parallelisation

Vectorisation

Directive
Insertion

Automatic Code
Transformation
/Optimisation
for Target
Architecture

User Directed
Code

Transformation

Query about
Program Info

Run Time
Info Used
for Guidance

Guidance in
Parallelisation
/Vectorisation

Guidance in
Code

Transformation

Guidance in
Dependence

Elimination

Program
Profiling

Performance
estimate

Parallelism
Estimate

Use a
Database

Interactive

Window-based
GUI

<=

o LS

o

Functions of Parallel Programming Tools (Transform Sequential to Parallel Continued)

Faust

IPS-2

Strand88

C-Linda

MONMACS

Dependency
Analysis

Y

DO-Loop
Parallelisation

Functional
Parallelisation

Vectorisation

Directive
Insertion

Automatic Code
Transformation
/Optimisation
for Target
Architecture

User Directed
Code

Transformation

Query about
Program Info

Run Time
Info Used
for Guidance

Y‘

Guidance in
Parallelisation
[Vectorisation

Guidance in
Code

Transformation

Guidance in
Dependence
Elimination

Program
Profiling

Performance
estimate

Parallelism
Estimate

Use a
Database

Interactive

Y

Y‘

Window-based
GUI

Y

* Reduce message passing by relocate Linda run time routines
* For Shared-memory only

Functions of Parallel Programming Tools (Transform Sequential to Parallel Continued)

Hypertool Schedule Force Parascope PAT
Y Y

Dependency
Analysis
DO-Loop

Parallelisation

Functional
Parallelisation
Vectorisation
Directive Y
Insertion
Automatic Code
Transformation
/Optimisation
for Target
Architecture
User Directed
Code
Transformation
Query about
Program Info
Run Time
Info Used
for Guidance
Guidance in
Parallelisation
/Vectorisation
Guidance in
Code
Transformation

Y Y

Guidance in
Dependence
Elimination

Program
Profiling

Performance
estimate

Parallelism
Estimate

Use a

Database
Interactive Y Y Y Y

Window-based
GUI1

Functions of Parallel Programming Tools (Transform Sequential to Parallel Continued)

Axe/Aims

PIE

Parti

Paragraph/PICL

Hypertask

Dependency
Analysis

DQO-Loop
Parallelization

Functional
Parallelisation

Vectorisation

Directive
Insertion

Automatic Code
Transformation
/Optimization
for Target
Architecture

User Directed
Code

Transformation

Query about
Program Info

Run Time
Info Used
for Guidance

Guidance in
Parallelisation
/Vectorisation

Guidance in
Code

Transformation

Guidance in
Dependence
Elimination

Program
Profiling

Performance
estimate

Parallelism
Estimate

Use a
Database

Interactive

Window-based
GUI

< |

Functions of Parallel Programming Tools (Transform Sequential to Parallel Continued)

CRAY/fpp KAP/CRAY Poker PPD

Dependency Y Y Y
Analysis

DO-Loop Y Y Y

Parallelisation

Functional
Parallelisation

Vectorisation Y Y

Directive Y Y
Insertion

Automatic Code Y Y
Transformation
/Optimisation
for Target
Architecture

User Directed Y Y
Code :

Transformation

Query about
Program Info

Run Time
Info Used
for Guidance

Guidance in
Parallelisation
/Vectorisation

Guidance in
Code

Transformation

Guidance in
Dependence
Elimination

Program

Profiling

Performance
estimate

Parallelism
Estimate

Usea
Database

Interactive

|~

Window-based
GUI

Functions of Parallel Programming Tools (Writing New Programs)

Forge/MIMDiser

Express

E/SP

VecPar_77

FATCAT

Language for
Parallel

Pro;ramminﬁ

Y

Y

Automatic
Data & Loop
Distribution

Task
Scheduling

Dynamic Load
Balancing

Code Frames

Consistency

Checking

Support for
Fortran 90

Dynamic
Resising
Arrays

Hardware
Configuration

Parallel 1/0

Functions of Parallel Programming Tools (Writing New Programs Continued)

Faust

IPS-2

Strand88

C-Linda

MONMACS

Language for
Parallel
Programming

Y

Y

Y

Automatic
Data & Loop
Distribution

Task
Scheduling

Dynamic Load
Balancing

Code Frames

Consistency

Checking

Support for
Fortran 90

Dynamiec
Resising
Arrays

Hardware
Configuration

Parallel I/O

Functions of Parallel Programming Tools (Writing New Programs

Continued)

Hypertool Schedule Force Parascope

PAT

Y Y

Language for
Paralle!

Programmin

Automatic
Data & Loop
Distribution

Task Y Y
Scheduling

Dynamic Load Y Y
Balancing

Code Frames

Consistency

Checking

Support for
Fortran 90

Dynamic
Resising
Arrays

Hardware
Configuration

Parallel I/O

Functions of Parallel Programming Tools (Writing New Programs Continued)

Axe/Aims | PIE | Parti | Paragraph/PICL | Hypertask

Language for Y Y Y
Parallel

Programming

Automatic Y
Data & Loop
Distribution

Task Y Y
Scheduling

Dynamic Load
Balancing

Code Frames

Consistency

Checking

Support for
Fortran 90

Dynamic ' Y
Resising
Arrays

Hardware

Configuration

Parallel 1/O

Functions of Parallel Programming Tools (Writing New Programs Continued)

CRAY/fpp ‘KAP/CRAY Poker | PPD

Language for Y
Parallel
Programming

Automatic

Data & Loop
Distribution

Task
Scheduling

Dynamic Load
Balancing

Code Frames

Consistency
Checking

Support for
Fortran 90

Dynamic
Resising
Arrays

Hardware
Configuration

Parallel 1/0

Functions of Parallel Programming Tools (Performance Tuning & Debugging)

Forge/MIMDiser

Express

E/SP

VecPar_77

FATCAT

Performance
Monitoring
Visualisation

Y

Y

Memory Access
Visualisation

Critical Path
Analysis and
Visualisation

Communication
and Event
Monitoring
and Analysis

Source Level

Debus_m

Race
Condition
Prediction

Race
Condition
Detection

Deadlock
Prediction

Deadlock
Detection

Functions of Parallel Programming Tools (Performance Tuning & Debugging Continued)

Faust

IPS-2

Strand88

C-Linda

MONMACS

Performance
Monitoring
Visualisation

Y

Y

Y

Y

Memory Access
Visualisation

Y'

Critical Path
Analysis and
Visualisation

Communication
and Event
Monitoring

and Analysis

Source Level

Debugging

Race
Condition
Prediction

Race
Condition
Detection

Deadlock
Prediction

Deadlock
Detection

* Tuple space usage

Functions of Parallel Programming Tools (Performance Tuning & Debugging Continued)

Hypertool

Schedule

Force

Parascope

PAT

Performance
Monitoring
Visualisation

Y

Y

Y

Memory Access
Visualization

Critical Path
Analysis and
Visualization

Communication
and Event
Monitoring
and Analysis

Source Level

Debugging

Race
Condition
Prediction

Race
Condition
Detection

Deadlock
Prediction

Deadlock
Detection

Functions of Parallel Programming Tools (Performance Tuning & Debugging Continued)

Axe/Aims

PIE

Parti

Paragraph/PICL

Hypertask

Performance
Monitoring
Visualisation

Y

Y

Y

Memory Access
Visualisation

Critical Path
Analysis and
Visualisation

Communication
and Event
Monitoring
and Analysis

Source Level

Debugging

Race
Condition
Prediction

Race
Condition
Detection

Deadlock
Prediction

Deadlock
Detection

Functions of Parallel Programming Tools (Performance Tuning & Debugging Continued)

CRAY/fpp

KAP/CRAY

Poker

PPD

Performance
Monitoring
Visualisation

Y

Memory Access
Visualisation

Critical Path
Analysis and
Visualisation

Communication
and Event
Monitoring

and Analysis

Source Level

Debugging

Race
Condition
Prediction

Race
Condition
Detection

Deadlock
Prediction

Deadlock
Detection

Parallel Programming Tools (Status)

Forge/MIMDiser Express E/SP VecPar_77
Platform Y-MP iPSC Sun Y-MP
X-MP NCUBE CRAY* Sun
CRAY?2 Sun IRIS***
iPSC pPC
Sun Macintosh
IRIS Y-MP**
NEC*
Operating UNIX UNIX UNIX UNIX
system UNICOS DOS
MacOS$
Languages Fortran Fortran Fortran Fortran
Fortran 90
C
C++
GUl X-Windows X-Windows X-Windows None
Sunview Sunview Sunview
Postscript
Maturity Bugs Fixed Unknown Unknown Unknown
Quickly
Cost $28,050/wkst $3,000/iPSC/860 TBD $2,500/wkst
mnt: $4,500/yr $15,000/Y-MP $19,500/Y-MP
$93,500/10 wkst | $1,500/Network of Suns Site License
$93,500/CRAY mnt :20% / yr $33,510/yr
$93,500/iPSC Perpetual
Site License $78,250
$158,950
mnt: 18,000/yr
Supplier PSR ParaSoft SES NAG
Contact John Levesque Adam Kolawa J. C. Browne | Sheila Caswell
(916) 621-1600 (818) 792-8941 (512) 474-4526 | (708) 971-2337
wkst: workstation
mnt: maintenance
yr: year
TBD: to be determined
* in the process of negotiation
»e beta test

bk port if desired

Parallel Programming Tools (Status Continued)
FATCAT Faust IPS-2 Strand88
Platform CRAY?2 CRAY Y-MP* Y-MP
Y-MP Sequent iPSC
X-MP Sequent
Sun Encore
Sun
Operating UNIX UNIX UNIX UNIX
system
Languages Fortran Fortran Fortran Fortran
C C
GUI None X-Windows X-Windows X-Windows
Maturity Unknown Unknown Unknown Unknown
Cost $50,000/source $100/source $300/source $22,000/iPSC/860
mnt: $3,375/yr
$3,000/Sun
mnt: $900/yr
Site License:
$30,000-$40,000
30% GOV dscnt
Supplier NEAT U. of Hlinois U.of Wisconsin Strand
Contact David Klapphols | David Hammerslag | Barton Miller Timothy Mattson
(201) 420-5509 (217) 244-0277 (608) 283-3378 (503) 690-9830

mnt: maintenance

yI: year

dsent: discount

* Available in March 1991

Parallel Programming Tools (Status Continued)
C-Linda MONMACS Hypertool Schedule
Platform Y-MP* iPSC/860 iPSC/2 CRAY?
iPSC/880**
Sequent
Encore
Sun
IRIS
IBM RS/8000
Appllo
Operating UNIX UNIX UNIX UNIX
system
Languages C Fortran**** C Fortran
Fortran*** C
GUl X-Windows X-Windows X-Windows X-Windows
Maturity Unknown Unknown Unknown Unknown
Cost $7,000/10wkst None Univ. None
$20,000/iPSC2 Distribution
Site License for ARC:
$90,000
Supplier SCA ANL UC Irvine U of Tenn.
Contact Ellen Smith Ewing Lusk Daniel Gajski | Jack Dongarra
(203) 777-7442 (708) 972-7852 | (714) 856-4155 (615) 972-8295

wkst: workstation
mnt: maintenance

yr: year

dsent: discount
TBD: to be determined
* not fully debugged
» will be available soon

L2 L]
888

available in March 1991

not directly supported, can be called from C

Parallel Programming Tools (Status Continued)

Force Parascope PAT Axe/Aims
Platform Y-MP Sun CRAY iPSC/880
CRAY2
Encore
Sequent
Convex
Alliant
Operating UNIX UNIX UNIX UNIX
~ system
Languages Fortran Fortran Fortran Fortran
GUI X-Windows X-Windows X-Windows
Maturity Unknown Unknown Unknown Unknown
Cost None Univ. Dist Univ. Dist None
Supplier U. of Colo. Rice U. GIT NASA ARC
Contact Harry Jordan Ken Kennedy Kevin Smith Jerry Yan
(303) 492-1411 | (713) 285-5188 | smithQboa.gatech.edu | (415)604-4381

Parallel Programming Tools (Status Continued)

PIE Parti Paragraph/PICL Hypertask
Platform Sun iPSC/8860 iPSC iPSC/860
Encore Ncube
VAX Ametek
Cogent
Operating Mach UNIX UNIX UNIX
system
Languages Fortran Fortran Fortran C
C C C
Ada
GUl X-Windows X-Windows X-Windows
Sunview
Maturity Unknown Unknown Unknown Unknown
Cost None None None None
Supplier CMU NASA Langley ORNL Intel
Contact Zary Segall Joel Salts Michael Heath Marc Baber
(412) 268-3736 | (804) 8684-2197 mthQindigo.epm.ornl.gov marc@isc,intel.com

Parallel Programming Tools (Status Continued)

CRAY/fpp KAP/CRAY Poker PPD
Platform CRAY CRAY Sun
Sun Sequent
Vax iPSC*
Operating UNICOS UNIX UNIX UNIX
system COos UNICOS
Ccos
ULTRIX
Languages Fortran Fortran C
GUI X-Windows
Maturity Bugs Fixed Bugs Fixed Unknown Unknown
Cost CRAY Compiler 1st copy: $7,500/yr Univ. Dist Univ. Dist.
Add’l: $3,750/yr
Site License: $15,000/yr
Supplier CRAY K&A U. of Washington | U. of Wisconsin
Contact Davida Blahm Larry Snyder Barton Miller
(217) 356-2288 (208) 543-1695 (608) 263-3378
yr: year
Add'l: additional copy

L g

buggy

5000 A SRV LY TR o pFAsALLeL

TNuLz (Cowmputor Scienc=s

NASA

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035

ARC 275 (Rev Feb 81)

3

N\,

N
\

N

Corn.)
L O9R

I;J/’JZ

wWs1=277

unclas
231590

>

?EF!’"TFFF\F[‘FF!

£

